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Definitions Equivalence relations and pattern avoidance

Permutations and patterns

A permutation in Sn is a bijection π : {1, . . . , n} → {1, . . . , n}. We
will use one-line notation for permutations,

for example,
π = 241635 is the permutation in S5 that sends

1 7→ 2

2 7→ 4

3 7→ 1

4 7→ 6

5 7→ 3

6 7→ 5

Patterns are also permutations but we are interested in how they
occur in other permutations . . .
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Definitions Equivalence relations and pattern avoidance

Patterns inside permutations
Given a pattern p we say that it occurs in a permutation π if π
contains a subsequence that is order-isomorphic to p. If p does not
occur in π we say that π avoids the pattern p.

Avn(p) = permutations in Sn that avoid the pattern p.

Example

Consider the permutation π = 241635 we had above.

• It has four occurrences of the pattern 123.

241635, 241635, 241635, 241635

• It has two occurrences of the pattern 231: 241635, 241635.

• It avoids the pattern 321.

These are now often called classical patterns.
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Definitions Equivalence relations and pattern avoidance

Vincular patterns

Babson and Steingŕımsson (2000) defined vincular patterns where
conditions are placed on the locations of the occurrence.

Example

Consider the permutation π = 241635 we had above.

• It has two occurrences of the pattern 1 2 3.

241635, 241635

These are also occurrences of the pattern 1 2 3, meaning that
they lie at the end of the permutation.

• It avoids the pattern 1 2 3.

Motivation . . . ?
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Babson and Steingŕımsson (2000) defined vincular patterns where
conditions are placed on the locations of the occurrence.

Example

Consider the permutation π = 241635 we had above.

• It has two occurrences of the pattern 1 2 3.

241635, 241635

These are also occurrences of the pattern 1 2 3, meaning that
they lie at the end of the permutation.

• It avoids the pattern 1 2 3.

Motivation . . . ?



Definitions Equivalence relations and pattern avoidance

Vincular patterns
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Definitions Equivalence relations and pattern avoidance

Vincular patterns

• Vincular patterns describe Mahonian statistics

• More counting sequences: If p is any classical pattern of
length 3 then

|Avn(p)| = n-th Catalan number =
1

n + 1

(
2n

n

)
.

If we replace p by a vincular pattern of length 3 some more
sequences appear, such as the Bell numbers, counting
partitions of sets.
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Definitions Equivalence relations and pattern avoidance

Vincular patterns

• They simplify descriptions given in terms of more complicated
patterns – factorial Schubert varieties have a very nice
description in terms of vincular patterns:

Xπ smooth if π avoids 3412, 4231

Xπ factorial if π avoids 3412, 4231

• But compatibility with the symmetry π 7→ πi is no longer valid
. . .
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Vincular patterns

For any classical pattern

|Avn(p)| = |Avn(pi)|.

But for a vincular pattern this is no longer true in general.

To fix this we need a more general type of pattern.



Definitions Equivalence relations and pattern avoidance

Vincular patterns

For any classical pattern

|Avn(p)| = |Avn(pi)|.

But for a vincular pattern this is no longer true in general.
To fix this we need a more general type of pattern.



Definitions Equivalence relations and pattern avoidance

Bivincular patterns

Bousquet-Mélou, Claesson, Dukes, and Kitaev (2010) defined
bivincular patterns as vincular patterns with extra restrictions on
the values in an occurrence.

Example

Consider the permutation π = 241635 we had above.

• It has one occurrence of the pattern 1 2 3
1 2 3: 241635.

This is

also an occurrence of 1 2 3
1 2 3 .

• It has one occurrence of the pattern 1 2 3
1 2 3: 241635.

This is also

an occurrence of 1 2 3
1 2 3.

• It has one occurrence of the pattern 1 2 3
1 2 3 : 241635.
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Bivincular patterns

We have now recovered

|Avn(p)| = |Avn(pi)|, p bivincular.
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We will now see how equivalence relations interact with pattern
avoidance . . .

. . . there are many equivalence relations on permutations that one
can look at, but we only have time to look at three, so I direct you
to http://arxiv.org/abs/1005.5419 if you want to read about
some more.

http://arxiv.org/abs/1005.5419


Definitions Equivalence relations and pattern avoidance

We will now see how equivalence relations interact with pattern
avoidance . . .
. . . there are many equivalence relations on permutations that one
can look at, but we only have time to look at three, so I direct you
to http://arxiv.org/abs/1005.5419 if you want to read about
some more.

http://arxiv.org/abs/1005.5419


Definitions Equivalence relations and pattern avoidance

The avoiding classes

Given a bivincular pattern p we are interested in the permutations
whose entire equivalence class avoids the pattern

Ãvn (p) = {π ∈ Sn : π and every equivalent permutation avoids p}.
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Definitions Equivalence relations and pattern avoidance

Conjugacy

The first equivalence relation we are going to look at is conjugacy.
Two permutations are said to be conjugate if they have the same
cycle type.
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Cycle type of a permutation

Given a permutation π ∈ Sn we can write it as a product of
disjoint cycles. The cycle type is the partition consisting of the
lengths of the cycles

Example

Consider the permutations in S3:

π product of cycles cycle type

123

(1)(2)(3) [1, 1, 1]

132

(1)(23) [2, 1]

213

(12)(3) [2, 1]

231

(123) [3]

312

(132) [3]

321

(13)(2) [2, 1]
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Equivalence classes in S3

So we have three equivalence classes in S3:

class elements in class

[1, 1, 1] 123
[2, 1] 132, 213, 321
[3] 231, 312

Example

Consider the pattern p = 1
1, (1 at the start) and the equivalence

classes in S3:

The class corresponding to cycle type [3] is the only
class we count so we get 2.
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Permutations without fixed points

If we do this for more n we get

|Ãvn
(

1
1

)
| = 0, 1, 2, 9, 44, 265, 1854, 14833, . . . , n = 1, 2, 3, . . . .

If you look this up on OEIS we find sequence A000166: the
subfactorial numbers, counting the number of derangements in Sn,
that is, permutations without fixed points. In fact

Ãvn
(

1
1

)
= derangements.
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Involutions

For the pattern 1 2 3
2 3 1, we get

|Ãvn
(

1 2 3
2 3 1

)
| = 1, 2, 4, 10, 26, 76, 232, 764, 2620, . . . , n = 1, 2, 3, . . . .

If you look this up on OEIS we find sequence A000085, counting
the number of involutions in Sn, that is, permutations which are
their own inverse. In fact

Ãvn
(

1 2 3
2 3 1

)
= involutions.
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Involutions – proof

Ãvn
(

1 2 3
2 3 1

)
= involutions.

Proof: Take a permutation π that is not in the set on the left.
Then some equivalent permutation π′ contains the pattern. This
means that π′ = 23 · · · 1 · · · , so π′ has a cycle of length ≥ 3, so π
must as well. Therefore π can not be an involution.

Now take a permutation π that is not in the set on the right. Then
it must have a cycle (abc · · · ) of length ≥ 3. Conjugate π with
(1a)(2b)(3c). This gives a permutation, with the same cycle type

(1a)(2b)(3c)π(1a)(2b)(3c) = 12 · · ·
23 · · ·

that contains the pattern.
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This generalizes

It turns out that this pattern is part of a family of patterns:
Let k ≥ 1

Ãvn
(

1 2 3 · · · k
2 3 · · · k 1

)
= permutations in of Sn only

containing cycles of length < k
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Definitions Equivalence relations and pattern avoidance

Knuth equivalence

Two permutations are said to be Knuth equivalent if they have the
same insertion tableau under the Robinson-Schensted-Knuth
correspondence.

Alternatively, two permutations are equivalent if they can be
connected through elementary swaps, for example

52314 ∼ 25314 ∼ 25341.
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Hook-shaped tableaux

The permutations in Ãvn (231) have hook-shaped insertion
tableaux, with 1, 2, . . . k in the first line, such as

1 2 3 4 5
1 2 3 4
5

1 2 3
4
5

1 2
3
4
5

1
2
3
4
5

It was known that these permutations are the avoiders of 231, 213,
so

Ãvn (231) = Avn(231, 213)

= Avn(2̃31).

It turns out that this is also true for any classical pattern of length
3, but starts failing for length 4.
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Ãvn (231) = Avn(231, 213) = Avn(2̃31).

It turns out that this is also true for any classical pattern of length
3, but starts failing for length 4.



Definitions Equivalence relations and pattern avoidance

Definitions
. . . from Combinatorics

Equivalence relations and pattern avoidance
Equivalence relations on the symmetric group
Conjugacy
Knuth equivalence
Toric equivalence
Other equivalence relations



Definitions Equivalence relations and pattern avoidance
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Example

We build the toric equivalence class of π = 241635 as follows:
Place 0 in front of π, then add 1 mod 7 repeatedly:

w/ zero

read from zero

0241635 241635
1352046 461352
2463150 246315
3504261 426135
4615302 246153
5026413 264135
6130524 524613

Then we read the list from zero, and that is the equivalence class
of π.
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Coprime integers

Theorem [U]

For n ≥ 1

|Ãvn
(

1 2 3
2 1 3

)
| = 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, . . .

(A000010)

= φ(n + 1),

where φ(n + 1) is Euler’s totient function, counting the integers
that are coprime to n + 1.

A crucial step in the proof is that the permutations in the set

Ãvn
(

1 2 3
2 1 3

)
are the permutations that lie in single element classes.
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Divisors

Theorem [U]

For n ≥ 1

|Ãvn
(

1 2 3
2 1 3

)
| = 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, . . . (A000005)

= d(n),

where d(n) counts the number of divisors of n, (sometimes
denoted σ0(n)).
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Example with n = 6

Example

Ãv6

(
1 2 3
2 1 3

)
k with gcd (k , 7) = 1

123456 1
415263

isomorphism!

2
531642

bijection

?

3
246135

−→

4
362514

k = location of 1

5
654321 6

The permutations in Ãv6

(
1 2 3
2 1 3

)
are shown in bold.
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Ãv6

(
1 2 3
2 1 3

)
k with gcd (k , 7) = 1

123456 1
415263

isomorphism!

2
531642 bijection

?

3
246135 −→ 4
362514 k = location of 1 5
654321 6

The permutations in Ãv6
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(
1 2 3
2 1 3

)
are shown in bold.



Definitions Equivalence relations and pattern avoidance

You can find primes with these sets but . . .

Since
∣∣∣Ãvn (1 2 3

2 1 3

)∣∣∣ gives the number of divisors in n we see that

n is prime if and only if
∣∣∣Ãvn (1 2 3

2 1 3

)∣∣∣ = 2,

and this gives an extremely inefficient way of checking for primes:
it takes about 14 seconds for my computer to check that 8 is not a
prime.
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A conjecture

Let

γ = lim
n→+∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
be Euler’s constant.

Conjecture [U]∑
π∈Ãvn

(
1 2 3
2 1 3

)(location of 1 in π) < eγ log log n,

is satisfied for all n larger than some constant.

This conjecture is equivalent to the Riemann Hypothesis! The sum
on the left gives us the sum of the divisors of n, denoted by σ(n).
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The sum-of-divisors function σ

Theorem [Robin, 1981]

The Riemann Hypothesis is true if and only if

σ(n) < eγ log log n,

holds for all n larger than some constant.

The largest known violation of this inequality is 5040, which
happens to be 7!, the size of S7, which is a strange coincidence!
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Structure of the permutations in Ãv n
(

1 2 3
2 1 3

)

Recall that the permutations in Ãvn
(

1 2 3
2 1 3

)
correspond to the

integers d that are coprime to n + 1. Let me denote them by νd ,n.
These permutations turn out to have lots of structure.
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Structure of the permutations in Ãv n
(

1 2 3
2 1 3

)

In S8 we have

ν1,8 = 12345678

ν2,8 = 51627384

ν4,8 = 75318642

ν5,8 = 24681357

ν7,8 = 48372615

ν8,8 = 87654321.

• They are all constructed the same way.

• The sum of the first and last elements
always equals n + 1.

• If d is a divisor then νd ,n ends in n/d .

• The increment (difference between two
elements) is a constant mod(n + 1).

• They multiply like the numbers they
correspond to, for instance,
ν4,8 ◦ ν5,8 = ν2,8 because
4 · 5 = 20 = 2 mod 9.

• If d is a divisor in n then the tableaux
that correspond to νd ,n are box-shaped
(and filled in trivially).
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(

1 2 3
2 1 3

)

In S8 we have

ν1,8 = 12345678

ν2,8 = 51627384

ν4,8 = 75318642

ν5,8 = 24681357

ν7,8 = 48372615

ν8,8 = 87654321.

• They are all constructed the same way.

• The sum of the first and last elements
always equals n + 1.

• If d is a divisor then νd ,n ends in n/d .

• The increment (difference between two
elements) is a constant mod(n + 1).

• They multiply like the numbers they
correspond to, for instance,
ν4,8 ◦ ν5,8 = ν2,8 because
4 · 5 = 20 = 2 mod 9.

• If d is a divisor in n then the tableaux
that correspond to νd ,n are box-shaped
(and filled in trivially).



Definitions Equivalence relations and pattern avoidance

Structure of the permutations in Ãv n
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• The sum of the first and last elements
always equals n + 1.

• If d is a divisor then νd ,n ends in n/d .

• The increment (difference between two
elements) is a constant mod(n + 1).

• They multiply like the numbers they
correspond to, for instance,
ν4,8 ◦ ν5,8 = ν2,8 because
4 · 5 = 20 = 2 mod 9.

• If d is a divisor in n then the tableaux
that correspond to νd ,n are box-shaped
(and filled in trivially).
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Definitions
. . . from Combinatorics

Equivalence relations and pattern avoidance
Equivalence relations on the symmetric group
Conjugacy
Knuth equivalence
Toric equivalence
Other equivalence relations
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Other equivalence relations
• Length of the longest increasing subsequence

• Fixed points

• Shape of the insertion tableau

• Descents

• Major index

• Entropy of a permutation

• Weak excedences

• Number of reduced words

• Signature

• (Number of) saliances

• (Number of) recoils

• Characteristic polynomial of perm. matrix

• Hessenberg form of perm. matrix

• Eigenvalues of perm. matrix

• Number of runs

• k-type

• Number of inversions

• Silly-sum

• Number of binary factorizations

• Size of interval to if in perm. poset

• f-vector of the complex of the above

• Number of anti-chains of interval to if in perm. poset

• Volume partition

• Superness

• Basic symmetries
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. . . and that’s the end

Thank you for your time!
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